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Abstract

The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum dimin-

ishing (LED) principle that maxima should not increase and minima should not decrease. This principle can

be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to

the total variation diminishing (TVD) principle for one-dimensionM problems. A new formulation of symmet-

ric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary

high order of accuracy in regions where the solution contains no extrema, and which can also be implemented

on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds

and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive

fluxes are examined, together with a modification of the scalar diffusion through the addition of pressure

differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind

and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow,

and provides excellent shock resolution at very high Mach numbers.

1 Introduction

Over the past decade the principles underlying the design of non-oscillatory discretization schemes for com-

pressible flows have been quite well established. A very large number of variations of artificial diffusion,

upwind biasing and flux splitting have been proposed and tested [22, 38, 26, 34, 31, 11, 40, 17]. In the same

period multigrid acceleration schemes have also been the subject of widespread investigation, and have proved

effective, particularly for subsonic and transonic flow. The use of limiters to enforce monotonic solutions, has

proved, however, to have an adverse effect on multigrid convergence. If fact, it is not uncommon for schemes

with limiters to become trapped in limit cycles. Limiters also tend to reduce the accuracy of solutions, par-

ticularly in regions containing smooth extrema. The first purpose of this paper is to develop a systematic

procedure for the analysis and design of a broad class of schemes which satisfy monotonicity constraints on

both structured and unstructured grids, and to illuminate some of the connections between alternative formu-

lations. The second purpose is to show ways in which these schemes can be modified to improve both their

accuracy and their rate of convergence to a steady state. Schemes which blend low and high order diffusion

[22], and both symmetric and upstream constructions using anti-diffusive terms controlled by limiters [19],

are readily included within the framework of this paper. The connection between schemes of this type and



schemeswhichrequiretheexactsolutionof a Riemann problem at each cell interface has been widely examined

elsewhere [12, 9, 45], and is not explored here.

Two main issues arise in the design of non-oscillatory discrete schemes. First there is the issue of how to

construct an approximation to a scalar convection or convection-diffusion equation which is non-oscillatory,

captures discontinuities with high resolution, and is sufficiently accurate. Second there is the issue of how to

construct a numerical flux for a system of equations with waves traveling at different speeds, and sometimes in

opposite directions. These two issues can be treated essentially independently, and by combining alternative

non-oscillatory formulations with different constructions of the numerical flux one arrives at a matrix of

candidate high resolution schemes, all of which may have acceptable characteristics. Reference [42] examines

the performance of such a matrix of schemes for viscous boundary layers.

Section 2 reviews the conditions for the construction of non-oscillatory schemes for scalar conservation laws.

Following a line adhered to in a number of works [6, 47, 23, 37] , including several by the present author

[16, 17, 20], it is suggested that the principle of non-increasing maxima and non-decreasing minima provides

a convenient criterion for the design of non-oscillatory schemes. This principle contains the concept of total

variation diminishing (TVD) schemes for one-dimensional problems, but can readily be applied to multi-

dimensional problems with both structured and unstructured grids. Such local extremum diminishing (LED)

schemes can be realized by making sure that the coefficients of the discrete approximation are non-negative.

First order accurate schemes satisfying this principle are easily constructed, but are too diffusive. It is well

known that schemes which strictly satisfy the LED principle fall back to first order accuracy at extrema even

when they realize higher order accuracy elsewhere. This difficulty can be circumvented by relaxing the LED

requirement. Therefore the concept of essentially local extremum diminishing (ELED) schemes is introduced.

These are schemes for which, in the limit as the mesh width Ax _ 0, maxima are non-increasing and minima

are non-decreasing.

One approach to the construction of high resolution schemes which combine monotonicity and higher order

accuracy is to blend low and high order diffusive terms as, for example, in the Jameson-Schmidt-Turkel (JST)

scheme [22]. It is proved in section 2.2 that with appropriately chosen coefficients the JST scheme is LED.

Moreover, the coefficients can be chosen so that the scheme is both second order accurate at smooth extrema

and ELED. Another approach to the construction of higher order schemes, which has been adopted by several

authors [47, 15, 44, 46] is to add limited anti-diffusive terms to a lower order scheme. In section 2.3 and

2.4 this procedure is used to derive a general family of symmetric limited positive (SLIP) schemes for both

structured and unstructured meshes. Moreover, the switch between low and high order terms in the JST

scheme can be formulated in such a way that the JST scheme becomes a special case of the SLIP scheme.

A slight modification of the SLIP formulation produces a corresponding family of upstream limited positive

(USLIP) schemes, which are derived in section 2.5, and resemble some well known upwind schemes [30, 40].

The limiters in the SLIP and USLIP schemes can be relaxed so that the schemes are second order accurate

at smooth extrema and ELED. Section 2.6 shows how a sequence of successively higher order ELED schemes

can be derived.

Section 3 discusses the treatment of systems of equations with several dependent variables. In order to apply

the local extremum diminishing (LED) principle, the flux may be split in a manner which corresponds to the

characteristic fields, so that the scheme is designed to limit extrema of the characteristic variables. The Roe

flux [34] provides a way to produce schemes that resolve stationary shock waves with a single interior point.

The use of a scalar diffusive flux constructed directly from the solution variables leads to simpler schemes

which can resolve shock waves with several interior points, and exhibit no overshoots provided that enough

diffusion is introduced locally. These schemes have proved quite effective for steady state calculations. Very

rapid convergence to a steady state can be achieved by the introduction of multigrid acceleration techniques.

Because of their low computational costs scalar diffusive schemes have proved quite suitable for industrial use,

and they have been successfully used for aerodynamic analysis in the design of aircraft such as the YF-23 [7].

Scalar diffusion has the drawback that in order to stabilize the calculation, it tends to introduce more



diffusionthanisreallyneeded.In thetreatmentof highReynoldsnumberviscousflowsin whichtheviscous
effectsaremainlyconfinedto thin boundarylayers,it is importantto keepthenumericaldiffusionin the
boundarylayersassmallaspossible.In supersonicflowtheregionof dependenceispurelyupstream,while
theuseof scalardiffusioncannotproducea discreteschemewhichis fullyupwind.Thiscanberemediedby
theintroductionofpressuredifferencesin themomentumequation.It isthenpossibleto constructafirstorder
schemewhichessentiallyreducesto pureupwindinginsupersonicflow,andwhichmaybeusedasthebasisfor
constructinghigherorderschemes.Upwindingof thepressurerequirestheintroductionof termswhichmay
berelatedto thewaveparticleschemeof Deshpande,RaoandBalakrishnan[33,4],andfluxsplittingrecently
proposedbyLiouandSteffen[27].Thissimpleconvectiveupwindandsplit pressure(CUSP)schemeproduces
discretenormalshockwaveswhichcontaintwoor threeinteriorpointsin transonicflow,andbecomesharper
at veryhighMachnumbers.

Section4presentsresultsof varioustestcalculationsfor one-,two-andthree-dimensionalproblems.It is
verifiedthat theJSTandSLIPschemeswithRoefluxprovideshighresolutionofshockwavesinshocktube
simulations.Theyalsoproduceshockwaveswithoneinteriorpointinsteadytransonicflowcalculationsfor
airfoils.TheCUSPschemehastheadvantage,howevernotonlyofreducedcomputationalcomplexity,butalso
ofsignificantlyfasterconvergenceto asteadystate.TransonicsolutionsusingtheCUSPschemeona 160×32
grid arepresentedfor threedifferentairfoils.Eachwasobtainedin 12multigridW-cycleswitha multistage
explicittimesteppingscheme.Thereductionof thenumberof stepsneededfor globalconvergenceto 12is
theculminationof 12yearsofeffort.

2 Non-oscillatory schemes for scalar equations

2.1 Local extremum diminishing (LED) and essentially local extremum dimin-

ishing (ELED) schemes

Consider the discretization of a time dependent conservation law such as

Ov Of v 0
+ ( ) +  g(v) = o,o--7

for a scalar dependent variable v on an arbitrary (possibly unstructured) mesh.

(1)

Assuming that the mesh

points are numbered in some way, let vj be the value at mesh point j. Suppose that the approximation to (1)

is expressed in semi-discrete form as
dvj _
"_ - E cjkv_

k

Then on introducing Taylor series expansions for v (xk - xj, Yk - Yj) it follows that in the absence of a source

term

cjk : 0
k

Thus there is no loss of generality in writing the scheme as

dvj _
- F-,e  (vk- v,).

k#j

Suppose that the coefficients are non-negative

cjk > 0, k ¢- j. (2)

Then the scheme is stable in the Loo norm, since ifvj is a maximum, vk -vj < 0, so that _ < 0, and similarly

a minimum cannot decrease. Suppose, moreover, that the stencil of the discrete scheme is compact

cjk = 0 if j and k are not nearest neighbors (3)



Then if v I is a local maximum (over the stencil of the difference scheme) vk - vj _< 0, with the consequence

that -_t -< 0. Thus a local maximum cannot increase, and similarly a local minimum cannot decrease. Such

a scheme will be called local extremum diminishing (LED).

This criterion has been proposed by various authors [6, 17, 21, 23, 47] as a convenient basis for the construc-

tion of non-oscillatory schemes on both structured and unstructured meshes. It assures positivity, because if

v is everywhere positive, then its global minimum is positive, and this cannot decrease. When specialized to

one dimension it also leads to the class of total variation diminishing (TVD) schemes proposed by Harten [11].

The total variation of v is

TV(v) = dv dx,
O0

that is the sum of the absolute values of the variation over each upward and downward segment. It was

observed by Laney and Caughey [23] that each extremum appears in the variation of the segment on each side

of that extremum, with the consequence that

TV(v)=2(Emaxima-Eminima ) ,

if the end values are fixed. Thus, if a one-dimensional scheme is LED, it is also TVD. On a triangular mesh,

a definition of total variation such as
P

TV(u) = /IlVull dS

is not an entirely satisfactory measure of oscillation. This is illustrated in Figure 1, where the total variation

of two peaks is found to be less than that of a single ridge. The LED principle, however, continues to be useful

l
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la: Two Peaks: TV =4+2x/_ (L1), 6 (L2), or 2+2x/_ (L¢_).

o o o o

0 0 0 0

lb: One Ridge: TY=6+,/g (L1),7 (L2), or S+3v_ (L_).

Figure l: Breakdown of TVD: The One Ridge Case is Less Oscillatory than the Two Peaks Case.

for multi-dimensional problems on both structured and unstructured meshes. Positivity conditions of the type

expressed in equations (2) and (3) lead to diagonally dominant schemes, and are the key to the elimination of

improper oscillations. The positivity conditions may be realized by the introduction of diffusive terms or by

the use of upwind biasing in the discrete scheme. Unfortunately, they may also lead to severe restrictions on

accuracy unless the coefficients have a complex nonlinear dependence on the solution.

Following the pioneering work of Godunov [10], a variety of dissipative and upwind schemes designed to

have good shock capturing properties have been developed during the past two decades [38, 6, 25, 26, 34, 31,

11, 30, 40, 2, 15, 46, 13, 45, 5]. If the one-dimensional scalar conservation law

Ov c9

-'_ + -_xf(v ) -- 0 (4)



is represented by a three point scheme

dvj _
d--7- c_+_(vs+, - vs) + c-j__(vs-i - vs),

the scheme is LED if

c_+_> o, c;__> o. (_)
A conservative semidiscrete approximation to the one-dimensional conservation law can be derived by subdi-

viding the line into cells. Then the evolution of the value vj in the 5th cell is given by

Ax_tJ + hs+ ½ - hs_ ½ = 0, (6)

where hi+½ is an estimate of the flux between cells j and j + 1. The simplest estimate is the arithmetic average

(fs+l + fs)/2, but this leads to a scheme that does not satisfy the positivity conditions. To correct this, one

may add a dissipative term and set

1

hi+. _ = _ (fs+l -t- fs ) - v_j+½ (Vj..F1 -- 1)j).

In order to estimate the required value of the coefficient aJ+-_, let as+ ½ be a numerical estimate of the wave

speed _°_-/_u,

{ _, if vs+l#vj

v.i+l -v.i

as+] if vs+l= Ol = vS

Now

and similarly

Then

where

hs+-_
1

= fs + -_(fs+l - fs) - '_s+_(vs+x- vs)

: fs- (aS+½-_as+½)(vs+l-vs)

1
hs_½ = fs - (aS-½"F-_as-½) (vs-vs-1).

hs+ ½ - hs_ _ = +(_as+½--aS+½) Avs+½

('+ -a. _ + Avs-'-'22 J-_

Thus the LED condition (5) is satisfied if

If one takes

the diffusive flux becomes

Avs+ ½ = vs+l - v s.

1 as+½ [c,s+ ½ > _

1 as+_c,s+ _ = _

1 as.! Av_a_ids+½ = 2 -2 .-_

and one obtains the first order upwind scheme

hs+½ = fS+l

if as+__ > 0

if as+ ½ < 0

(7)



This is the least diffusive first order scheme which satisfies the LED condition. In this sense upwinding is a

natural approach to the construction of non-oscillatory schemes.

Another important requirement of discrete schemes is that they should exclude nonphysical solutions which

do not satisfy appropriate entropy conditions [24]. These correspond to the convergence of characteristics

towards admissible discontinuities. This places more stringent bounds on the minimum level of numerical

viscosity [28, 41, 29, 32]. In the case that the numerical flux function is strictly convex, Aiso has recently

proved [1] that it is sufficient that

for e > 0. Thus the numerical viscosity should be rounded out and not allowed to reach zero at a point where

the wave speed a(u) = _ approaches zero. This justifies, for example, Harten's entropy fix [11].

Higher order schemes can be constructed by introducing higher order diffusive terms. Unfortunately these

have larger stencils and coefficients of varying sign which are not compatible with the conditions (2) for a

LED scheme, and it is known that schemes which satisfy these conditions are at best first order accurate in

the neighborhood of an extremum. It proves useful in the following development to introduce the concept of

essentially local extremum diminishing (ELED) schemes. These are defined to be schemes which satisfy the

condition that in the limit as the mesh width Az ---, 0, local maxima are non-increasing, and local minima are

non-decreasing.

2.2 High resolution switched schemes: Jameson-Schmidt-Turkel (JST) scheme

Higher order non-oscillatory schemes can be derived by introducing anti-diffusive terms in a controlled manner.

An early attempt to produce a high resolution scheme by this approach is the Jameson-Schmidt-Turkel (JST)

scheme [22]. Suppose that anti-diffusive terms are introduced by subtracting neighboring differences to produce

a third order diffusive flux

( 1( ))di+ ½ = c_j+½ Avj+½ - -_ Avj+] + Avj_½ , (8)

l a^z3 °_ The positivity condition (2) is violated by this scheme. It proveswhich is an approximation to $ _ 5_'_"

that it generates substantial oscillations in the vicinity of shock waves, which can be eliminated by switching

locally to the first order scheme. The JST scheme therefore introduces blended diffusion of the form

dj+½ +e_]_½Avj+½

_e]4+_½(Av_+]- 2Avi+ ½+ Ave_i),

(9)

The idea is to use variable coefficients e_22½_and e_42½_which produce a low level of diffusion in regions where

the solution is smooth, but prevent oscillations near discontinuities. If e(_22½__is constructed so that it is of order

Ax 2 where the solution is smooth, while e(i42½__is of order unity, both terms in dj+½ will be of order Ax 3.

The JST scheme has proved very effective in practice in numerous calculations of complex steady flows,

and conditions under which it could be a total variation diminishing (TVD) scheme have been examined by

Swanson and Turkel [39]. An alternative statement of sufficient conditions on the coefficients .j+½-(_)and e(4)j+½
for the JST scheme to be LED is as follows:

Theorem 1 (Positivity of the JST scheme)

Suppose that whenever either vj+l or vj is an eztremum the coe_icients of the JST scheme satisfy

1 o_j+½ , _(4) = 0 (10)

6



Then the JST scheme is local extremum diminishing (LED).

Proof: We need only consider the rate of change of v at eztremal points. Suppose that vj is an eztremum.

Then

e(4) ,(4) = 0
j+½ =-j_½

and the semi-discrete scheme (6) reduces to

1 _ {e(2) 1
Ax-_/J = (e (2) -_aj+½ ) Avi+½ + ) Avj_½\ J+½- \ 5-½ 7a_-½

and each coefficient has the required sign. []

.(2) and e(4) with the desired properties defineIn order to construct Cj_½ J-½

R(u,v)= ifu#0or v:¢0
0 ifu=v=O

(11)

where q is a positive integer. Then R(u, v) = 1 if u and v have opposite signs. Otherwise R(u, v) < 1. Now set

Qj = R(Avj+½, Avj_½), Qj+½ = max(Qj, Qj+I

and

where

_(2) .(4)
5+½ = aj+½Qj+½' cj+½=flj+½(1-Qj+½), (12)

1
aj+_[ /3j+½is proportional to at+ ½_+½ > _

At an extremum Qj = 1, since then Avj+] and Avj_½ have opposite signs. Elsewhere Qj _< 1 and is of order

Ax if the solution is smooth. Thus the conditions (10) for a LED scheme are satisfied, and if q _> 2, e_22½_is

of order Ax 2 in smooth regions.

An alternative formulation may be derived by noting that if Avj+] and Avj_½ are of opposite sign then

either vj or vj+l is an extremum. If, on the other hand, they have the same sign, then either there is no local

extremum, or there is a local oscillation with a maximum at either vj or Vj+l, and a minimum at the other

point. Suppose that _(_42½_is required to be zero only when Avj+_ and Avj_½ have opposite signs. Then if

e_42½ =fi 0, Avj+__ = CAvj__ where ¢ > 0. Similarly if "J-½"(4):/: 0, Avj__ = ¢Avj+_ where ¢ > 0. Thus the

semi-discrete scheme (6) reduces to

[(2) 1) (e(2) 1 )= \<5+½-7a +½ Avj+½- 5-½+ av;_ 

I[:.1 -- "Jl" --

Since ¢ )_ 0 and ¢ _) 0 it follows that the scheme is LED if

1 aj+½

at every mesh point j. This is satisfied by setting

C(2)
5+½

QJ+½

e(4)
=aj+_Q_+], _+½

at+½

= R(Avj+_,Avj_½)
1

= fi_j+__(1 - Q_+_)

1 aj+½ I>

(13)



The switches defined by the formula (11) have the disadvantage that they are active at smooth extrema. In

order to prevent this, redefine R(u, v) as

u-v IaR(u, v) -- max(lulVi_, eAz r) (14)

where e > 0 and r is a positive power. This reduces to the previous definition if lul + Ivl > ,xx'. Now in any

region where the solution is smooth Avj+½ - Avj_] or Avj+] - Avj_½ are of order Az _. In fact if there is a

smooth extremum in the neighborhood of vj or vj+l, a Taylor series expansion indicates that Avj+_, Avj+½

and Avj_½ are each individually of order Ax 2, since _ = 0 at the extremum. Choose r = 3 Then R is of

order Az]. It follows that if q > 2, e(i2)___is of order Az, and dj+½ is of order Az 2.

Suppose, moreover, that vj is a maximum and that Avj+] has the opposite sign to Avj_½, while Avj_]

has the opposite sign to Avj+½. Then in the scheme (13)either Qj+½ = l, or Avj+,} I < eAx _ and Avj_½[ <

eAx r. Similarly either Qj_½ = 1, or Avj+½[ < eAx _ and Avj_] < eAx _. Now

( 1 1 )

( 1 1 /- ___ + _+_(1 - O_+_) + _-_ A,,j__

1

1
-4- -_. ,(1-Qj_½)Avj__.2 J-'_

Thus in any case the coefficient of Avj+½ is non-negative and the coefficient of Avj_½ is non-positive, while if

Qj+½ < 1, Av/+][ < tAx" and ifQj_½ < 1, t v,_,l is a maximum, Avj+½ <

I I I

0and

Avj_ ½ > 0. It follows that
dvj 1

/xz--_-i- <_-_(c,j+_ + c,__½ )uxz r

If Avj+] has the same sign as Avj_], then it produces a negative contribution to 9" In any case, therefore,

if vj is a maximum _ < B, and similarly if vj is a minimum _ > -B, where B ---* 0 as Az _ as long as

r > 1. Thus the scheme (13) is essentially local extremum diminishing (ELED). A similar argument shows

that the scheme (I1) is also ELED provided that

oe(4) 1

1

which is the case if j3j+½ > ]aj+½.

2.3 Symmetric limited positive (SLIP) scheme

An alternative route to high resolution without oscillation is to introduce flux limiters to guarantee the sat-

isfaction of the positivity condition (2). The use of limiters dates back to the work of Boris and Book [6].

A particularly simple way to introduce limiters, proposed by the author in 1984 [15], is to use flux limited

dissipation. In this scheme the third order diffusion defined by equation (8) is modified by the insertion of

limiters which produce an equivalent three point scheme with positive coefficients. The original scheme [15]

can be improved in the following manner so that less restrictive flux limiters are required. Let L(u, v) be a

limited average of u and v with the following properties:

P1. L(u,v) = L(v,u)

P2. L(au, av) = ctL(u, v)

P3. L(u, u) = u



P4. L(u, v) = 0 if u and v have opposite signs: otherwise L(u, v) has the same sign as u and v.

Properties (P1-P3) are natural properties of an average. Property (P4) is needed for the construction of a

LED or TVD scheme.

It is convenient to introduce the notation

¢(r) = L(1, r) = L(r, 1).

where according to (P4) ¢(r) >_ 0. It follows from (P2) on setting _ = _ or _ that

Also it follows on setting v = 1 and u = r that

Thus, if there exists r < 0 for which ¢(r) > 0, then ¢ (1) < 0. The only way to ensure that ¢(r) _> 0 is to

require ¢(r) = 0 for all r < 0, corresponding to property (P4).

Now one defines the diffusive flux for a scalar conservation law as

dj+_=o_j+_{Avj+i-L(Avj+_,Avj__)} (15)

Also define

r +- Avj+_ r-- Avj__

Avj_½ ' Avj+_ "

Then, the scalar scheme (6) reduces to

AX dvj _
dt

1 1

( , )= -}- c_j+_---_aj+_+c_j_._¢(r-) Avj+_

- ____ + _a___ +_j+_¢(r +) Av___

I aj+½[ for all j, and ¢(r) > 0, which is assuredThus the scheme satisfies the LED condition if aj+½ > g

by property (P4) on L. At the same time it follows from property (P3) that the first order diffusive flux is
I

canceled when Av is smoothly varying and of constant sign. Schemes constructed by this formulation will be

referred to as symmetric limited positive (SLIP) schemes. A variation is to include the coefficient _j+½ in the

limited average by setting

dj+i = a;'l"t Avlxl.-2 .-2

-L(a.-3Av.-3,a. ,Av. ,_
(17)

It is easily verified that the argument remains valid. These results may be summarized as

Theorem 2 (Positivity of the SLIP scheme)

Suppose that the discrete conservation law (6) contains a limited diffusive flux as defined by equations (15) or

(17). Then the positivity condition (7}, together with the properties (P1-P4) for limited averages, are sufficient

to ensure satisfaction of the LED principle that a local mazimum cannot increase and a local minimum cannot

decrease. []



Theconstructionbenefitsfromthefactthat thetermsinvolving¢(r-) and¢(r+) reinforcethepositivity
of thecoefficientswhenever¢ is positive.ThustheonlymajorrestrictiononL(u, v) is that it must be zero

when u and v have opposite signs, or that ¢(r) = 0 when r < 0. If Avj+] and Avj_½ have opposite signs then

there is an extremum at either j or j + 1. In the case of an odd-even mode, however, they have the same sign,

which is opposite to that of Avj+], so that they reinforce the damping in the same way that a simple central

fourth difference formula would. At the crest of a shock, if the upstream flow is constant then Avj__ = O,

and thus Avj+] is prevented from canceling any part of Avj+_ because it is limited by Avj__.

A variety of limiters may be defined which meet the requirements of properties (P1-P4). Define

so that

1 {sign(u) + sign(v)}S(u, v) =

1
S(u,v) = 0

-1

if u > 0 and v > 0

if u and v have opposite sign

if u < 0 and v < 0

Three limiters which are appropriate are the following well-known schemes:

1. Minmod:

L(u, v) = S(u, v) min(lul, Ivl)

2. Van Leer:

L(u,v) = S(u,v)--
21ullvl

lul + Ivl

3. Superbee:

L(u, v) = S(u, v) max {min (21ul, Ivl), rain (1_1,21.1)}

Another formulation is simply to limit the arithmetic mean by some multiple of the smaller of [u I and Ivl:

4. or-mean:

L(u,v):S(u,v)min( 'lu+v' , octul, o4vl)

With the present construction the first three of these limiters are unnecessarily stringent. Superbee, for

example, could be relaxed to
a-bee:

L(u, v) = S(u, v) max {min (41,1, I_1), mi. (I,I, _,1_1)}

which reduces to minmod when a = 1, and is less stringent then Superbee when a > 2. Superbee differs

from the other iimiters in that it introduces a larger amount of antidiffusion than that needed to cancel the
1 v

diffusion, ½(u + v), when 5 < _ < 3. The resulting negative diffusion tends to produce artificial compression

of discontinuities.

In order to produce a family of limiters which contains the first two limiters it is convenient to set

1
L(u, v) = -_D(u, v)(u + v)

where D(u, v) is a factor which should deflate the arithmetic average, and become zero ifu and v have opposite

signs. Take

u- v q (18)
D(u,v)= 1-R(u,v)= 1- u + v

where R(u, v) is the same function that was introduced in the JST scheme, and q is a positive integer. Then

D(u, v) = 0 if u and v have opposite signs. Also if q = 1, L(u, v) reduces to minmod, while if q = 2, L(u, v)

is equivalent to Van Leer's limiter. By increasing q one can generate a sequence of limited averages which

10



approacha limit definedbythearithmeticmeantruncatedto zerowhenu and v have opposite signs. When

u is extreme the limiter approaches the asymptotic valuethe ratio r =

¢(r) = L(1, r) --* q as r --* c¢.

When the terms are regrouped it is apparent, moreover, that the JST scheme with the second definition of the

switch, equation (13), and the SLIP scheme with this limiter are identical. This unifies the two formulations.

As in the case of the JST scheme, the SLIP scheme can be relaxed to give an essentially local extremum

diminishing (ELED) scheme which is second order accurate at smooth extrema by introducing a limited average

with a threshold through the definition

I U--V qD(u,v)= 1- max(iuf+]v/,eAx r)

where r = _, q _> 2. The effect of this "soft limiter" is not only to improve the accuracy: the introduction of a

threshold below which extrema of small amplitude are accepted also usually results in a faster rate of conver-

gence to a steady state, and decreases the likelyhood of limit cycles in which the limiter interacts unfavorably

with the corrections produced by the updating scheme. In a scheme recently proposed by Venkatakrishnan a

threshold is introduced precisely for this purpose [43].

2.4 SLIP schemes on multi-dimensional unstructured meshes

2

3

4 5

I

Figure 2: Cell Surrounding Vertex o.

Consider the discretization of the scalar conservation law (1) by a scheme in which v is represented at the

vertices of a triangular mesh, as sketched in Figure 2. In a finite volume approximation (1) is written in

integral form as

d--t v as + (f(v) dy - g(v) dx) = O,

and this is approximated by trapezoidal integration around a polygon consisting of the triangles with a common

vertex, o, say.

Thus (1) is discretized as

sdvo 1
dt + 2 _ {(h + A-l) (Y_ - yk-_) - (gk + gk-1)(xk - xk-1)} = 0

k

where fk = f(v_), gk = g(v_), S is the area of the polygon, and k ranges over its vertices. This may be

rearranged as

seVoat + - g Axk)=0
k

ll



where
1 1

Ax_ = _ (zk+l - xk-1), Ayk = _ (Yk+l -- Yk-_).

Following, for example, References [16] and [21], this may now be reduced to a sum of differences over the

edges ko by noting that ];]:_ Azk = _k Ayk = 0. Consequently fo and go may be added to give

sd_o
dt + _-'_{(fk - fo)Ayk -- (9k -- go)Azk} = 0. (19)

Define the coefficient ako as

and

Avko

o.o:  .=vo

Then equation (19) reduces to

hVko : Vk -- Vo.

dt + Z akoAVko = O.
k

To produce a scheme satisfying the sign condition (2), add a dissipative term on the right hand side of the

form

Z _k°Avk°' (20)
k

where the coefficients (_ko satisfy the condition

_o >_lakol. (21)

These simple schemes are far too dissipative. Antidiffusive terms may be added without violating the

positivity condition (2) by the following generalization of the one-dimensional scheme. Considering again the

scalar case, let l_o be the vector connecting the edge ko and define the neighboring differences

A+Vko=lko'V+v, A-vko=l_o'V-v,

where Xr+v are the gradients of v evaluated in the triangles out of which and into which lko points, as sketched

in Figure 3. Arminjon and Dervieux have used a similar definition [3].

q

Figure 3: Edge ko and Adjacent Triangles.

It may now be verified that

,X+V_o = _pk (vp - vk)+_qk (Vq - vk)

12



and
A-vko = _o,(Vo- v,) + _o,(Vo- v,),

where the coefficients _pk, Qk, _o, and cos are all non-negative. Now define the diffusive term for the edge ko

as

a_o= _ko{Avko- r (A+v_o,A-_o)}, (22)

where L(u, v) is a limited average with the properties (P1-P4) that were defined in Section 2.3. In considering

the sum of the terms at the vertex o write

where

L(A+vko, A-vko) = ¢(r+)A-vko,

+ A+vko

r k ° _ _ -_-_oko "

Then, since the coefficients Cot and co, are non-negative, and ¢(r+o) is non-negative, the limited antidiffusive

term in (22) produces a contribution from every edge which reinforces the positivity condition (2). Similarly,

in considering the sum of the terms at k one writes

L(A+,;ko, A-vko) = ¢(r-L)A+vko,

where
A- vk o

rk° -- A+Vko

and again the discrete equation receives a contribution with the right sign. One may therefore deduce the

following result:

Theorem 3 (Positivity Theorem for Unstructured Meshes)

Suppose that the discrete conservation law (19) is augmented by flux limited dissipation following equations

(20) and (22). Then the positivity condition (21), together with the properties (PI-P4) for limited averages,

are sufficient to ensure the LED properly at every interior mesh point. []

Note also that if this construction is applied to any linear function v then

Avko : A+Vko : A-vko,

with the consequence that the contribution of the diffusive terms is exactly zero. In the case of a smoothly

varying function v, suppose that lko.VV # 0 and the limiter is smooth in the neighborhood of r_o = 1. Then

substitution of a Taylor series expansion indicates that the magnitude of the diffusive flux will be of second

order. At an extremum the antidiffusive term is cut off and the diffusive flux is of first order.

2.5 Upstream limited positive (USLIP) schemes

By adding the anti-diffusive correction purely from the upstream side one may derive a family of upstream

limited positive (USLIP) schemes. Corresponding to the original SLIP scheme defined by equation (15), a

USL1P scheme is obtained by setting

d,+_=_+_ {%+__- L(%+.

if at+ ½ >O, or

13



if aj+½ < 0. If aj+½ = ½ aj+½ [ one recovers a standard high resolution upwind scheme in semi-discrete form.

Consider the case that aj+,} > 0 and aj_½ > 0. If one sets

r + _ Avj+½
Ave_½' r -

the scheme reduces to

A dr, 1 (¢(r+)a,+_ + (2-¢(r-))a,__) Av,_].x-j7 = -_

To assure the correct sign to satisfy the LED criterion the flux limiter must now satisfy the additional

constraint that ¢(r) < 2.

The USLIP construction can also be implemented on an unstructured mesh by taking

= la ol{AV o-r (aV o, }

if a_o > 0 and

dko = lakol {Avko - L (Avao, A+v_o) }

if ako < O. Let _+ and _- denote sums over the edges meeting at the vertex o for which aJ:o > 0 and

ako < O. Define
Av_o _ A+vko

rt°-- A-vko ' rk°- AVko

Then

F_, (2- (,.;o))Av o

and substituting the formula for A-Vko the coefficient of every difference Avko is found to be nonnegative,

with the consequence that the scheme is LED.

2.6 General construction of higher order SLIP schemes

Schemes of any desired order of accuracy in regions where the solution does not contain extrema can be

constructed by the following general procedure. Suppose that the scalar conservation law (1) is approximated

in semi-discrete form by the low and high order schemes

and

Az_t + f£,+½ - fL,_½ = 0 (23)

A dvj
x--_- + fn,+½ -- fH,_½ = 0 (24)

where the low order scheme has positive coefficients and is local extremum diminishing (LED). Define an

anti-diffusive flux as

Aj+ _ = fH,+½ - fL,+½,

and in order to define a limited corrective flux fcj+½ let Bj+½ be a bound determined from the local slopes as

Bj+½ = Iminmod(Av,+],Avj+½,Av,_½)l,

where minmod(u, v, w) = 0 if u, v, and w do not have the same sign, and otherwise

minmod (u, v, w) = S min (lul, I'1, Iwl),

14



whereS is the sign of u, v, and w. Set

fc,+½ = sign (A,+_ ) min (lA,+ _

where/3j+_ > 0. The SLIP scheme is now defined as

Az_tJ + hi+½ - hj___ = 0,

where

, _,+_ B_+_), (25)

(26)

hj+_ = fL,+½ + fc,+_. (27)

Thus, it reduces to the high order scheme when the limiters are not active. It is important that the limiter

depends only on the magnitude of the local slopes, and not their sign, so that the correction can have either

sign.

In order to prove that the general SLIP scheme is LED, note that the low order LED scheme can be written

as dvj
Ax-_ = c_+__xv_+_- c;_ ,_Av___,

where c++] > 0 and cj--_ > O. Now,

(IAj+½1,B,+½B,+½) =7,+_B,+½, O< 7,+] < B,+].min

Also,

sj+__Bj+_ = ¢+++±vj+_ = ¢#+_Avj+½ = ¢#+__Avs___,

ss+ _ = sign(Avj+ ½)

where

and

0_< ¢++] < 1, 0 < ¢_.+_ < 1, 0_<¢5+ ½ < 1

since BS+ ½ = 0 if Av5+_, Av5+_, and Avj_ _ do not all have the same sign. Define

sat+ ½ = sign (As+½) •

Then, since BS+ ½ = B5_ ½ = 0 unless ss+ ½ = sj_½,

fc,_½ - f%+_ =
1

+_ ss+½ +

1
-_ 1_5-_ -

1
+_ ss+½-

8 A ,_½ "_j-½ e/gj-½ A_3j- ½

sa,+_ t 75+½¢5+½Avj+]

l [sj-½ + ]75+½ ¢5+½ Avs-½-_ sa,+½

so that the correction reinforces the positivity of c++½ and cj_½. This provides the proof of

Theorem 4 (Positivity of the General SLIP Scheme)

The semi-discrete scheme defined by equations (25-27) is LED if the low order scheme (23) is LED. [:3

The key idea in this proof is that the correction AS+ ] may be associated with either Av 5_ ½ or Avj +3 depending

on whether it has the same or the opposite sign as Avs_ ½ and Avs+ ½.

The idea of blending high and low order schemes to produce a limited anti-diffusive correction is similar to

that used in Zalesak's generalization of flux corrected transport (FCT) [47]. With FCT the anti-diffusion is
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introducedina separatecorrectorstage,whereasin thepresentschemeit is integratedin theconstructionof
thenumericalflux. Thisbringsit within theframeworkofa generaltheoryof LEDschemes,andfacilitates
its extensionto treatsystemsof equationsbytheintroductionoffluxsplittingprocedures.

Topreventtheschemecollapsingtotheloworderschemeatsmoothextrema,modifythedefinitionofBj+½
to

Bj+½ =max{ minmod(Avj+_,Avj+½,Avj_½) ,eAx_}.

Now either

or

s_+_Bj+½ = Cj_+_av_+_ = ¢_+lAv,._ -,,,_ = ¢___Av__½,

Suppose that the low order scheme is essentially local extremum diminishing (ELED). Then if vj is a maximum

fLj_½ -- fLj+½ < KLAx p, P > 1

It follows that the corrected scheme satisfies

dvj
d----(< KL'ax"-i + (_'+½ + _-_)"_'-'

Taking r > p, there is a constant K such that:

Similarly if vj is a minimum

dvj
-- < K Ax p
dt

dvj-- >-KAx p
dt

Therefore the corrected scheme is ELED. Also if the low order scheme is of order L, then in a region where

the flow is smooth

Aj+½[ = O(Ax L)

since the leading error term is cancelled by the high order scheme. If r > l, and L > r, then when the mesh is

sufficiently fine Aj+½ will not be limited by Bj+½ near a smooth extrema, so the accuracy of the high order
scheme will be recovered.

As an example of the general SLIP construction suppose that the numerical flux has the form

1
hi+½ = _ (fj+l + fj)-- dj+_,

where for the low order scheme

and for the high order scheme

1 a¢+½dj+½ = ai+½Avj+ ½ , at+ ½ > -_

dj+½ aj+½ (Avj+½ 1 1= - 5Avi+ ] - 5Av,_½).

These are just the diffusive fluxes which are used in the switched JST scheme described in Section 2.2. The

anti-diffusive flux in the SLIP scheme is now

1
mj+½ = _aj+½ (Av._+] + Av./_½).

In this case the bound Bj+ ½ need only depend on the smaller of [Avj+][ and Avj_][, provided that Avj+]

and Avj_½ have the same sign, leading to the first SLIP scheme with a-mean as the limiter. Here the SLIP
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construction provides an alternative switching procedure to the sensor in the JST scheme, such that the LED

property is enforced.

To construct a sequence of successively higher order SLIP schemes one may start by constructing a second

order scheme SLIP2, say by taking

f(L1 ) 1
,+½ = -_ (fj+, + fj) -- o_j+.} Avj.t. ½

f(l) 1
n,+½ = _(fj+l + fj)

- + :,,,j_:)
AO) = f(1) _ f(l)

j+_ H.i+½ L._+½

J+½

+sign {4(:) _ min (IA ('), I _j+_Bj+__)
\"J+½] kl J+:l '

Then one may repeat the procedure, taking

where

and

f(Z ) = h (1)
,+_ _+½

'+3 = :(f,+1 +f,)--:': AL+ _ -AL- ½

1

zxf +_ = ±/5+1 - zx/ ,

A(j'+)_i = f(_) - ffL2),+½ ,+½

h(':½ = f(Z ) + sign (A (_) {]A(')'+½ \ ,+½) min I B,+_}B,+½)\1 _+½ '

The resulting scheme, which may be conveniently labelled SLIP4, is fourth order accurate when the limiters are

inactive. The procedure may then be iterated. The correction f(2) _ f(2) is of order Ax _, and subsequent
Hi+½ Lj+½

corrections are of correspondingly higher order. Thus they are progressively less likely to be limited by the

bound Bj+].

2.7 General SLIP scheme on unstructured meshes

The general SLIP construction may also be implemented on unstructured meshes. With the notation of

Figure 4, let fLko and fg,,o be low and high order fluxes along the edge ko. Define the anti-diffusive flux along

this edge as

A_o = fHko -- fL_o (28)

and the limited corrective flux as

fc_. = sign(Ako) min(IAkol, e_oB_o), (29)

where /3_o > 0 and Bko is a bound determined by the local slopes. In order to define Bko let I and n be any

vertices neighboring o and k such that

sign(Avnk) = sign(Av_o), sign(Avot) = sign(AVko).

If there is no such vertex n then k is a local extremum , and if there is no such vertex l then o is a local

extremum. In either case set Bko = 0. Otherwise set

Bko = min (IAv, k[, [Avko], IAVotl). (30)
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n

Figure 4: Edge ko and Adjacent Edges.

The flux along the edge ko for the SLIP scheme is now defined as

Yko = SL_o + fC, o.

It may be verified that the scheme can be expressed in terms of differences between the vertex o and its

nearest neighbors with non-negative coefficients by adapting the one-dimensional derivation of the last section

in the same way that the one-dimensional derivation of Section 2.3 was adapted to the unstructured mesh in

Section 2.4. This result may be stated as

Theorem 5 (Positivity of the General SLIP Scheme on Unstructured Meshes)

If the discrete conservation law (I9) is augmented by the diffusive fluz fLko and fCko defined by equations (28-

30), then the scheme is LED at every interior point, t3

The construction requires the identification of any three edges lo, ok and kn along which the solution is

monotonically increasing or decreasing. If Avko > 0 one could search for vertices l and n which maximize

Av,,k and Avot, but since the number of edges meeting at a given vertex can be very large, this procedure

could be expensive, and one might prefer to apply the test to the edges nk and ol most nearly aligned with

the edge ko.

2.8 Fully discrete LED schemes

When a discrete time stepping scheme is introduced to produce a fully discrete scheme, let a superscript n

denote the time level, and suppose that

v?+1= bjkv 
k

A Taylor series expansion now shows that if the discrete scheme corresponds to a differential equation with no

source term, then

Also

y_bjk = 1.

IvT+l l < _ Ibjklrnkax lv'_}
k

Therefore the solution has a nonincreasing Loo norm if
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Figure 5: Thresholds for a Fully Discrete LED Scheme.

These two conditions can be satisfied only if bjk >_ 0 for all j, k. The LED principle may now be expressed

by requiring that v7 +a < v 7 if v_ is a maximum and v7 +1 > v7 if v7 is a minimum, while if v7 is not an

extremum, v7 +1 must be within thresholds defined by the maximum and minimum values of v_ at the nearest

neighboring points. This will be the case if both bjk >_ 0 and bjk = 0 if j and k are not neighbors. The

following result is immediate.

Theorem 6 (Positivity of Fully Discrete Schemes)

Suppose that the semi-discrete scheme
dvj _
d--?- _ _,(v, - vj)

k#j

is LED. Then a time step At > 0 can be found such that the corresponding forward Euler scheme

,,7+_= v7 + r,t Z a_(v_- 07)
J:#j

is LED.

Proof: The coefficients of the discrete scheme are

bjk = Ataj_, k ¢ j

The off diagonal coefficients bjk inherit the positivity of the coefficients of the original scheme, while bH > 0 if

1

[]

Given a forward Euler scheme that satisfies the positivity conditions, Shu has devised a procedure for con-

structing higher order multi-stage time stepping schemes which preserve these conditions under an appropriate

restriction of the time step [35]. Second and third order schemes can be constructed without any modification

of the space discretization.
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In thecaseoftheonedimensionalconservationlawaforwardEulerschemehastheform
At

vT+: = v7 -- h-:(hj+__ - h___)

and one must consider the interaction of the flux hj+_ with the solution at the points j + 1 and j. Both the

SLIP and USLIP constructions remain valid under a constraint on the time step which depends on the choice

of the limiter. Suppose that the flux limiting function ¢(r) is hounded, ¢(r) < Cmax. Then the limit on At

becomes smaller as ¢max is increased.

In the case of the SLIP scheme, for example, equation (16) is replaced by

v?+'=v? + h--; _+_ 2':- -a:+, + __½¢(r-) Cv_+:- v?)

_t _,-½ + - + ¢(r+) (v? - _2-11Ax 2 aj_½ aj+½

The coefficients of v_+_ and v___ are non-negative if aj+_ _ ½ aj+½]. If one takes the minimum level of
I

diffusion aj+½ = ½ aj+½ the coefficient of v_ is

/,t {taj+, a,+_+*(:/ a,__l+ a,__ +.,__+,(:)a,+_}bjj = 1 - _

Consider the case when both aj+½ and aj_½ are positive. Take a = max(aj+],aj__). Then bjj > 0 if
a At 1< _ or in the case of the limiter (18), ax: <T_.at 1

3 Systems of conservation laws

3.1 Flux splitting

Steger and Warming [38] first showed how to generalize the concept of upwinding to the system of conservation

laWS

_--_w+_-_x ( )=0 (31)

by the concept of flux splitting. Suppose that the flux is split as f = f+ +f- where _ and _ have positive

and negative eigenvalues. Then the first order upwind scheme is produced by taking the numerical flux to be

hi+½ = f? + f/+l"

This can be expressed in viscosity form as

hi+½ =

where the diffusive flux is

1 1
+_ (f?+,+ f?) -: (f?÷,- f?)

1 1

+ _ (f?+,+ f? ) + : (:7+' - ./'71

I

= _ (/j+l+ fj)-- dj+½,

1

dj+½ = _A(f+ _ f-)j+½. (32)

Roe derived the alternative formulation of flux difference splitting [34] by distributing the corrections due to

the flux difference in each interval upwind and downwind to obtain

dwj
AX--_- + (fj+l--fj)- "F(fj--fj-l)+ = 0,

where now the fluxdifferencefj+1 - fj issplit.The corresponding diffusivefluxis

1

d.i+_"="_(Af/+.] --A f;+½) .
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Following Roe's derivation, let Aj+½ be a mean value Jacobian matrix exactly satisfying the condition

fi+l -fj = Aj+½ (wj+l - wj).

Then a splitting according to characteristic fields is obtained by decomposing A j+½ as

Aj+½ = TAT -1,

where the columns of T are the eigenvectors of Aj+½, and A is a diagonal matrix of the eigenvalues. Then

Now the corresponding diffusive flux is

where

Aft+½ = TA+T-1Awj+½.

Aj+½I(wj+ 1 - wj),2

Aj+½ =TIAIT -_

and IAI is the diagonal matrix containing the absolute values of the eigenvalues.

Simple stable schemes can be produced by the splitting

(fj+l -- fj):l: 1= 7(.t'_+_- f_) :_ ,_+½(_j+_ - _j),

1 ,\(A,+½)which satisfies the positivity condition on the eigenvalues if _j+½ > 7 max and corresponds to the
scalar diffusive flux

dj+½ = (_j+½Awj+½. (33)

Characteristic splitting has the advantage that it allows a discrete shock structure with a single interior point.

The simple scalar diffusive flux (33) is computationally inexpensive, and combined with the high resolution

switched scheme captures shock waves with about three interior points.

3.2 Construction of convective upwind and split pressure (CUSP) schemes

Discrete schemes should be designed to provide high accuracy in smooth regions in combination with oscillation-

free shocks at the lowest possible computational cost. This in turn requires both economy in the formulation,

and in the case of steady state calculations, a rapidly convergent iterative scheme. The convective upwind

and split pressure (CUSP) scheme described below meets these requirements, while providing excellent shock

resolution at high Mach numbers. When very sharp resolution of weak shocks is required, the results can be

improved by characteristic splitting with matrix diffusion using Roe averaging.

Consider the one-dimensional equations for gas dynamics. In this case the solution and flux vectors appearing

in equation (31) are

W ---- pu , f = pu 2 +p ,

pE pull

where p is the density, u is the velocity, E is the total energy, p is the pressure, and H is the stagnation

enthalpy. If 3' is the ratio of specific heats and c is the speed of sound

c2 7P
P

H = E + p - c2 u2
p -_-1 +Y

21



In a steadyflowH is constant. This remains true for the discrete scheme only if the diffusion is constructed

so that it is compatible with this condition.

The eigenvalues of the Jacobian matrix A = _ are u, u+c, and u-c. Ifu > 0 and the flow is locally

supersonic (M = _ > 1), all the eigenvalues are positive, and simple upwinding is thus a natural choice for

diffusion in supersonic flow. It is convenient to consider the convective and pressure fluxes

(0)f_=u pu =uw_, fp= p

pH 0

separately. Upwinding of the convective flux is achieved by

dc¢+½= uj+½ Awc¢+½ = IMIc¢+½,Xw¢,+½,

where M is the local Mach number attributed to the interval. Upwinding of the pressure is achieved by

(o)dp_+½ = sign(M) APj+½ .
0

Full upwinding of both f_ and fp is incompatible with stability in subsonic flow, since pressure waves with

the speed u - c would be traveling backwards, and the discrete scheme would not have a proper zone of

dependence. Since the eigenvalues of _ are u, u and 7u, while those of -_ are 0, 0 and -(7 - 1)u, a split

with

f+ =re, f- = fv

leads to a stable scheme, used by Denton [8], in which downwind differencing is used for the presure.

This scheme does not reflect the true zone of dependence in supersonic flow. Thus one may seek a scheme

with

de,+½ = fl(M)c.i+½ Awci+ ½

(o)dp,+½ = Is(M) APj+½ ,
0

where fl(M) and f_(M) are blending functions with the asymptotic behavior fl(M) _ IMI and f2(M) ---*

sign(M) for IMI > 1. Also the convective diffusion should remain positive when M = 0, while the pressure

diffusion must be antisymmetric with respect to M. A simple choice is to take fl(M) = IMI and f2(M) =

sign(M) for IMI > 1, and to introduce blending polynomials in M for IMI < 1 which merge smoothly into the

supersonic segments. A quartic formula

fl(M) = ao + a_M 2 + a4M 4, [M[ < 1

preserves continuity of fl and _ at IMI = 1 if

3 1

a2 = -_ - 2ao, a4 = ao - _.

Then ao controls the diffusion at M = 0. For transonic flow calculations a good choice is ao = _, while for

very high speed flows it may be increased to ½. A suitable blending formula for the pressure diffusion is

1

f2(M) = 2M(3 - MS), IMI <
1.

The diffusion corresponding to the convective terms is identical to the scalar diffusion of Jameson, Schmidt

and Turkel [22], with a modification of the scaling, while the pressure term is the minimum modification
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neededto produceperfectupwindingin thesupersoniczone.Theschemeretainsthepropertyof theoriginal
schemethat it is compatiblewithconstantstagnationenthalpyin steadyflow. If onederivestheviscosity
correspondingto theflux splittingrecentlyproposedby LiouandSteffen[27],followingequation(32),one
findsthattheirschemeproducesfirst orderdiffusionwithasimilargeneralform,andthepresentschememay
thusberegardedasaconstructionof artificialviscosityapproximatelyequivalentto Liou-Steffensplitting.

3.3 Multi-dimensional systems

Schemes for structured meshes are conveniently constructed treating each mesh direction separately in a

manner similar to the one-dimensional case. For unstructured meshes, the three-dimensional conservation law

19-'--_+ f(v) + g(v) + h(v) = 0 (34)

can be treated in a manner similar to the scalar case by first expressing the convective flux balance as a sum of

differences along edges. Consider the set of tetrahedrons containing a common edge. Then one may associate

with that edge a vector area S which is one-third the sum of the areas of the set of faces which form one of two

opposing umbrellas around the edge. With a notation similar to that of Figure 2 the convective flux balance

corresponding to equation (34) at an interior mesh point may be written as

vdVodt + (rt -  o).sto = 0, (35)
t

where the columns of F are the flux vectors f, g and h, and V is the volume of the polyhedron formed by

the union of all the tetrahedrons with the common vertex o. Here Fo may be added or subtracted since

_-':_tSto = 0. Diffusion may now be added along the edges in exactly the same way as before. When the

convective flux balance is evaluated, it is more convenient to use the sum _]t (Ft + Fo)'Sto, so that the

convective flux along each edge needs to be calculated only once in a loop over the edges and appropriately

accumulated at nodes k and o.

The SLIP scheme can now be formulated with the aid of Roe's construction [34]. Let Ako be a matrix such

that

Ato (w, - Wo) = (lek - Fo)"Sto.

Suppose that Ato is decomposed as TAT -1 where the columns tj of T are the eigenvectors of Ato. Then

the difference Aw = wt - wo is expressed as a sum F_.j ajtj of the eigenvectors, where the coefficients aj =

(T-1Aw)j represent the characteristic variables, and the diffusive term along the edge ko is constructed as

IAkolAw = TIAIT-1Aw.

In order to construct a higher order scheme, an anti-diffusive flux may then be calculated by applying the

limited averaging procedure as in equation (22) to each characteristic variable separately.

At boundary points equations (19) or (35) need to be augmented by additional fluxes through the boundary

edges or faces. The first order diffusive flux atoAvto may be offset by subtracting an antidiffusive flux evaluated

from the interior, taking a limited average with Avto.

4 Convergence acceleration for steady state calculations

4.1 Time stepping schemes

The discretization of the spatial derivatives reduces the partial differential equation to a semi-discrete equation

which may be written in the form
dw

dm[ + R(w) = 0, (36)
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wherew is the vector of flow variables at the mesh points, and R(w) is the vector of the residuals, consisting

of the flux balances augmented by the diffusive terms. In the case of a steady state calculation the details of

the transient solution are immaterial, and the time stepping scheme may be designed solely to maximize the

rate of convergence.

If an explicit scheme is used, the permissible time step for stability may be so small that a very large number

of time steps are needed to reach a steady state. This can be alleviated by using time steps of varying size

in different locations, which are adjusted so that they are always close to the local stability limit. If the

mesh interval increases with the distance from the body, the time step will also increase, producing an effect

comparable to that of an increasing wave speed. Convergence to a steady state can be further accelerated

by the use of a multigrid procedure of the type described below. With the aid of these measures explicit

multistage schemes have proved extremely effective•

If one reduces the linear model problem corresponding to (36) to an ordinary differential equation by

substituting a Fourier mode tb = e ipxJ, the resulting Fourier symbol has an imaginary part proportional to

the wave speed, and a negative real part proportional to the diffusion. Thus the time stepping scheme should

have a stability region which contains a substantial interval of the negative real axis, as well as an interval

along the imaginary axis. To achieve this it pays to treat the convective and dissipative terms in a distinct

fashion. Thus the residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the time level nAt by a superscript

n. Then the multistage time stepping scheme is formulated as

W(n+l, 0) = W n

• . °

W(n+l, k) = w" - a_At (Q(k-1) + O(k-1))

W n+l = w(n+l,rn),

where the superscript k denotes the k-th stage, am = 1, and

Q(0) = Q(wn), D (°)=D(w n)

O(k) -- _kO(W(n+l,k)) +(1--Zk)O (k-l).

The coefficients ak are chosen to maximize the stability interval along the imaginary axis, and the coefficients

_k are chosen to increase the stability interval along the negative real axis.

These schemes do not fall within the standard framework of Runge-Kutta schemes, and they have much

larger stability regions. Two schemes which have been found to be particularly effective are tabulated below•

The first is a four-stage scheme with two evaluations of dissipation. Its coefficients are

_1 = ½ _1 = 1

 2=½
5

a3=_ _a=O

_4=1 ¢4=0

(37)
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Thesecondisafive-stagescheme with three evaluations of dissipation. Its coefficients are

al--} /31=1

-_=1 /32=0

43=_ /33=0.56.
1

44= _ /34 =0

o_s= 1 /35 =0.44

(38)

4.2 Multigrid

The multigrid scheme is a full approximation scheme defined as follows [14, 16]. Denote the grids by a subscript

k. Start with a time step on the finest grid k = 1. Transfer the solution from a given grid to a coarser grid by

a transfer operator Pk,k-l, so that the initial state on grid k is

wl °) = Pk,lc-lWk-1.

Then on grid k the multistage time stepping scheme is reformulated as

W_ q+l) =. W_ 0)- 4nAt (R_ q) -_ Gk) ,

where the residual R (q) is evaluated from current and previous values as above, and the forcing function Gk

is defined as the difference between the aggregated residuals transferred from grid k - 1 and the residual

recalculated on grid k. Thus

where Qk,k-I is another transfer operator. On the first stage the forcing term Gk simply replaces the coarse

grid residual by the aggregated fine grid residuals. The accumulated correction on a coarser grid is transferred

to the next higher grid by an interpolation operator Ik-l,k so that the solution on grid k - 1 is updated by

the formula

:.o ( :)k-1 : Wk-I "3v lk-l,k Wk -- w .

The whole set of grids is traversed in a W-cycle in which time steps are only performed when moving down

the cycle. First order numerical diffusion is always used on the coarse grids, and in cases when characteristic

splitting is used on the fine grid, simple scalar diffusion is used on the coarse grids.

5 Numerical Results

Extensive numerical tests have been performed with schemes based on the theory of Sections 1-4. Some

results are presented here to illustrate the performance in practice of both the CUSP scheme and schemes

using characteristic splitting.

5.1 Shock tube

In order to verify that the general higher order SLIP construction is effective in preventing oscillations in

unsteady flow, Figure 6 presents a calculation of the Sod problem [36] for a shock tube. This calculation

was performed with characteristic splitting, using the fourth order SLIP scheme formulated in Section 2.6.

In the one-dimensional case single stage time stepping schemes of second or higher order similar to the Lax-

Wendroff scheme can he derived at little cost in complexity by the successive substitution of space derivatives

for time derivatives. Here, since the purpose was to verify the LED property of the SLIP scheme, a simple

1 Theforward Euler time stepping scheme was used with a time step corresponding to a Courant number of 5"

computed results are superposed on the exact solution. The shock wave and expansion are very well resolved.

The contact discontinuity is less sharply resolved, as is to be expected because of the absence of a natural

compressive effect at a contact discontinuity.
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5.2 Steady flow calculations using the CUSP scheme

A variety of multigrid calculations using the CUSP scheme are presented in Figures 7-11, including both

transonic and hypersonic flows. The scheme was implemented with a JST switch which was formulated with

pressure gradients. Using subscripts i, j to label the mesh cells, let ei+½d be the diffusive flux calculated by

the CUSP scheme from the states wi+l,j and wi,j. Then the final diffusion is

,(2) e - - +di+½,J = i+½,.i i+½,j

where

,l_2½,j = e_Ri+_j, ,142½,j = max(0,1- f/Ri+½,j)

Ri+½, j = max(Ri+2,j, Ri+l,j, Ri d, Ri-l,j)

Ri,j = R(Api+_,j,Api_½,j)

Api+_,j = Pi+l,j -- Pi,j

and R(u, v) is the function defined by equation (14) with q = 3, r = _. In hypersonic flow c_ = 1, corresponding

to pure upwinding, but in transonic flow the shock resolution is improved by taking a = .625. In both cases

_? is taken as 2.

With this construction the role of the high order diffusion is to provide global damping of oscillatory modes

which would otherwise inhibit convergence to a steady state, while the role of the first order diffusion is to

control oscillations near discontinuities. Numerical experiments with multigrid acceleration confirm that the

rate of convergence to a steady state is essentially the same when the first order diffusion is eliminated, but

large pre- and post-shock oscillations appear in the solution. On the other hand the multigrid scheme will not

converge if the global diffusion is eliminated.

Figures 7-9 show transonic solutions for three different airfoils, calculated on 160x32 meshes with O-

topology, and each of which is essentially converged in 12 multigrid cycles. The five stage time stepping

scheme (38) was used, and the work in each cycle is about equal to two explicit time steps on the fine grid.

It may be noted also that the computed drag coefficient of the Korn airfoil at the shock-free design point is

zero to four digits. The drag coefficient is also computed to be zero to four digits for subsonic flows over a

variety of airfoils with lift coefficients in the range up to 1.0. Very little change is observed between solutions

calculated on 80x 16 and 160x32 meshes, providing a further confirmation of accuracy.

The CUSP scheme produces very sharp shock waves in hypersonic flow, provided that care is taken to

define the cell interface Mach number as the Mach number on the downwind side, so that downwind terms

are perfectly canceled in supersonic flow. This is illustrated in Figures 10 and 11, which show the flow past a

semicircular blunt body at Mach 8 and 20. It can be seen that quite rapid convergence, at a rate of the order

of 0.9, continues to be obtained with the multigrid scheme in hypersonic flow.

5.3 Steady flow calculations using characteristic splitting

The remaining figures show the results of using characteristic splitting, with Roe linearization of the Jacobian

matrices across the cell interfaces. The difference scheme was the symmetric limited positive (SLIP) scheme,

applied to the differences of the characteristic variables Let

A fi+_,j = Ai+½,jAwi+½, j

where Afi+½ J = fi+l,i - fi,j, Awi+½,j = Wi+l,j -- Wi,j and Ai+½, j is the Jacobian matrix calculated with Roe

averaging,
_q_+l,j + Pv/-P77,jq_,i

4=

for any quantity q. Then define

Avi+_j = T-1Awi+½,j
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where Ai+_, j = TAT -1, and apply the SLIP construction to each element of Avi+½, j separately. For each
characteristic field the diffusion coefficient is taken as

_J+-_ = 2

where _ = IAI if IAI > e, ½(e + _-_) if I),l < e. The limiter defined by equation (18) was used, with q = 3, r = 3.

With this limiter the scheme is also precisely the JST scheme defined by equations (13) and (14). Therefore

the scheme may be designated JSTR (Jameson-Schmidt-Turkel-Roe).

Figures 12 and 13 show calculations for the same two cases as Figures 7 and 8, the RAE 2822 airfoil at Mach

0.75 and 30 angle of attack, and the NACA 0012 airfoil at Mach 0.8 and 1.250 angle of attack, calculated on a

very fine 320×64 meshes with O-topology. In each case the convergence history is shown for 200 cycles, while

the pressure distribution is displayed after a sufficient number of cycles for its convergence. Only 25 cycles

were needed for the RAE 2822 airfoil. Convergence was slower for the NACA 0012 airfoil, because additional

cycles are needed to damp out a wave downstream of the very weak shock wave on the lower surface. Both

calculations verify that the SLIP or equivalent JST schemes can resolve shocks with just one interior point if

they are combined with characteristic splitting.

Figures 14 and 15 show the performance of the scheme in hypersonic flow past a semicircular blunt body

for the same conditions as Figures l0 and ll, Mach 8 and 20. These figures also exhibit the sharp discrete

shocks which are obtained with the SLIP-JSTR construction. 500 multigrid cycles were used in each of these

calculation. While the convergence is not as fast as the CUSP scheme, the multigrid scheme is still quite

effective.

Figures 16 and 17 show applications of the SLIP scheme with characteristic splitting to two airfoils which had

previously been found to have non-unique solutions in calculations using the JST scheme with scalar diffusion

[18]. The non-uniqueness is confirmed in these calculations, supporting the belief that these airfoils truly

admit non-unique Euler solutions. The conditions under which the nonuniqueness was verified are identical

with those found with the earlier scheme. In order to force the selection of one or other, of the solutions, it

was sometimes necessary to start the calculation at a slightly higher or lower angle of attack, and then shift

it by .050 after 200 cycles. This can be seen in the convergence histories.

Finally, Figure 18 shows a three-dimensional Euler solution for the ONERA M6 wing at Mach 0.840 and

an angle of attack of 3.060 calculated on a 192x32x48 mesh with O-O topology using the SLIP scheme with

characteristic splitting. This again verifies the non-oscillatory character of the solution and sharp resolution

of shock waves.

6 Conclusion

These numerical experiments confirm the theory of local extremum diminishing (LED) schemes, as it has been

set forth in this paper. The following are the main conclusions of this study:

1. The scalar diffusion that has been widely used can be significantly improved by the addition of a pressure

term as defined in the CUSP formulation. Sharp discrete shocks are then obtained at high Mach numbers,

and rapid multigrid convergence at all Mach numbers.

2. The use of a split diffusive flux corresponding to the characteristic fields with Roe averaging improves the

resolution of shocks in the transonic range, particularly when they are weak.

3. The switched Jameson-Schmidt-Turkel (JST) scheme with the improved switch defined by Equations (13)

and (14), and the equivalent symmetric limited positive (SLIP) scheme, defined by equations (15) and

(18), are effective for steady state calculations in a wide Mach range.

4. Corresponding symmetric limited positive (SLIP) and upstream limited positive (USLIP) schemes can be

defined for both structured and unstructured meshes.
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In the continuation of this paper the construction of numerical fluxes for the gas dynamic equations is

further examined, and conditions are found under which steady discrete shock waves can contain a single

interior point. It is shown that while characteristic decomposition is one way to achieve this property, it is not

the only way, and equally sharp resolution can be obtained with less complex splittings.
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Figure 6: Shock Tube Problem using SLIP Scheme with Pressure and Density Ratios of 10.0 and 8.0,

respectively. Computed Results (+) are Compared with Theory (--) for 160 Equally Spaced Mesh Points.
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Figure 7: RAE 2822. Mach 0.750, Angle of Attack 3°, 160x32 Mesh.
CUSP Scheme.
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CUSP Scheme.
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CUSP Scheme.
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Figure 14: Bluff Body. Mach 8, 160x64 Mesh.

SLIP-JST Scheme with Characteristic Splitting.

15a: Cp on the Centerline in Front of the Body.

Figure 15: Bluff Body. Mach 20, 160>(64 Mesh.

SLIP-JST Scheme with Characteristic Splitting.
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18a: 12.50% Span.

Cs = 0.2940, Cd = 0.0268.
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18b: 31.25% Span.

Cz = 0.3144, Cd = 0.0154.
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18c: 50.00% Span.
Ci = 0.3261, Cd = 0.0083.
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18d: 68.75% Span.
C_ = 0.3190, Ca = 0.0018.

Figure 18: Onera M6 Wing.

Math 0.840, Angle of Attack 3.06 _, 192x32x48 Mesh.
C_ = 0.3048, CD -- 0.0125.

SLIP Scheme with Characteristic Splitting.

4O


